Professor Shih-Min Hsia‘s research team from the School of Nutrition and Health Sciences at Taipei Medical University has collaborated with leading uterine leiomyoma experts, Professors Ayman Al-Hendy and Mohamed Ali from the University of Chicago, to investigate the key mechanisms driving uterine leiomyoma formation and propose innovative therapeutic strategies.
The findings, published in the high-impact journal Redox Biology (impact factor 10.7), highlight the importance and academic value of this research.
Uterine leiomyomas, common benign tumors in women of reproductive age, exhibit a high prevalence and significantly affect women’s health and quality of life. These tumors are characterized by excessive cell proliferation, extracellular matrix (ECM) accumulation, and stem cell-like properties.
The research team identified that Nicotinamide Adenine Dinucleotide (NAD⁺) metabolism and its key enzyme, Nicotinamide Phosphoribosyl transferase (NAMPT), are pivotal in the progression of uterine leiomyomas.
Analysis of uterine leiomyoma tissues revealed that elevated NAMPT expression is positively correlated with increased ECM accumulation and enhanced stem cell-like characteristics. Subsequent experiments using the NAMPT inhibitor FK866 and the vitamin B3 derivative nicotinamide (NAM) demonstrated that these agents significantly reduced uterine leiomyoma cell viability, attenuated stem cell-like properties, and effectively decreased ECM accumulation, highlighting their potential as therapeutic options. Furthermore, the team successfully obtained a patent in Taiwan for the use of nicotinamide as a treatment for uterine leiomyomas, solidifying the translational and clinical impact of their findings.
This study underscores the critical role of NAMPT and NAD⁺ metabolism in uterine leiomyoma development and emphasizes the promise of precision medicine interventions targeting NAMPT as a novel treatment strategy.
This international collaboration with the University of Chicago exemplifies the power of cross-border partnerships in elucidating complex disease mechanisms and developing innovative therapies, paving the way for new advancements in uterine leiomyoma research and treatment.
(資料來源:國際事務處)